본문 바로가기
병원 치료/수술

스크랩 표정만 봐도 안다… ‘수술 후 통증’​​ 예측하는 인공지능 모델 개발

by 크리에이터 정관진 2024. 7. 20.

 

 
얼굴 표정만을 기반으로 한 인공지능 모델(빨강색)은 다른 데이터 조합의 인공지능 모델들보다 곡선 아래 면적이 넓었다. 이는 가장 높은 정확도로 통증 발생을 예측할 수 있음을 의미한다. / 분당서울대병원 제공
얼굴 표정만으로 수술 후 통증 발생을 예측하는 인공지능 모델이 국내 의료진에 의해 개발됐다. 의료진은 해당 모델의 유용성을 확인한 연구 결과도 발표했다.

통증 표현은 환자의 건강 상태를 반영하는 중요한 정보 중 하나로, 환자의 안전과 빠른 회복을 위해서는 의료진의 적절한 평가와 신속한 대처가 필요하다. 특히 수술 환자의 최대 71%가 수술 후 통증을 겪는 것으로 알려졌는데, 통증 정도는 매우 주관적이고, 소아나 정신질환자 등 스스로의 통증을 표현하기 어려운 경우 통증의 유무, 강도 등을 정확하게 예측하기 어렵다는 한계가 있었다.

이에 분당서울대병원 마취통증의학과 구본욱·박인선 교수 연구팀은 통증에 대해 반사적으로 나타나는 얼굴 표정, 생리적 신호 등을 이용해 수술 후 환자의 통증을 평가·예측하는 인공지능 모델을 개발하고자 연구를 수행했다.

연구팀은 전신마취 하에 위 절제 수술을 진행한 환자를 대상으로 ▲수술 전 통증이 없는 상태 ▲수술 후 마취회복실 입실 직후 ▲환자가 진통제가 필요한 정도의 통증을 표현했을 때 ▲진통제 투여 후 통증이 경감된 상태에서의 얼굴 표정을 촬영했다. 이와 함께 통상적으로 통증 모니터링을 위해 사용되는 ‘진통통각지수(ANI)’와 활력 징후와 같은 생리적 신호, 환자의 주관적인 통증 강도를 표현하는 ‘숫자통증척도(NRS)’를 측정했다. 이후 수집한 데이터를 다양하게 조합해 인공지능 모델을 구축하고, 수술 후 통증 강도를 예측할 수 있는지 검증했다.

연구 결과, 얼굴 표정 데이터만을 학습시킨 인공지능 모델은 수술 후 발생한 중증 통증을 매우 높은 정확도로 예측했다. 진통통각지수, 활력 징후와 같은 생리적 신호를 기반으로 한 모델보다 성능 또한 뛰어났다. 얼굴 표정만 학습시킨 인공지능 모델은 예측 정확도가 AUROC 0.93으로 가장 높았으며, 얼굴 표정과 활력 징후 데이터를 함께 학습한 모델(AUROC 0.84)이 뒤따랐다. AUROC는 인공지능 모델의 예측 정확도를 나타내는 성능지표로, 1에 가까울수록 성능이 우수함을 의미한다.

구본욱 교수는 “마취회복실에서 빠르고 정확하게 환자의 통증을 평가하는 인공지능을 이용한다면, 적절한 통증 관리 치료를 통해 수술 환자 회복의 질을 높이는 데 기여할 수 있을 것”이라며 “이번에 개발한 모델은 수술 후 통증 환자뿐 아니라, 의사소통이 어려운 환자들의 통증 평가에도 큰 도움이 될 수 있다”고 말했다.

이번 연구 결과는 SCIE급 국제 학술지 ‘대한마취통증의학회지’에 게재됐다.


출처 : https://health.chosun.com/site/data/html_dir/2024/07/17/2024071701463.html
 

출처: 크리에이터 정관진 제1군단 원문보기 글쓴이: 니르바나