본문 바로가기
종류별 암/신,방광암

신장암 수술 후 ‘급성 신손상’ 예측법 개발

by 크리에이터 정관진 2021. 9. 30.

분당서울대병원 신장내과 김세중 교수

[헬스코리아뉴스 / 박원진] 급성 신손상은 신장세포가 갑작스럽게 손상을 받아 신장기능이 약화되는 질환이다. 병원에 입원하는 환자의 5~10%에서 발생하며, 신장암 수술을 받는 경우에는 위험도가 더 커진다. 이를 조기에 치료하지 못하면 비가역적으로 진행해 투석, 사망 같은 위험한 상황을 초래할 수 있기 때문에, 특히 신장암 환자를 대상으로 수술 후 급성 신손상이 발생하지 않는지 주의 깊은 모니터링이 필요하다.

분당서울대병원 신장내과 김세중 교수, 비뇨의학과 이상철 교수, 서울대병원 신장내과 한승석 교수, 비뇨의학과 곽철 교수 연구팀은 머신러닝 알고리듬을 이용해 ‘신장암 수술 후 급성 신손상 예측 시스템’을 개발하고, 기존 모델과 비교해 정확도를 평가해 그 결과를 발표했다.

우선 연구진은 2003년부터 2017년까지 서울대병원과 분당서울대병원에서 신세포암으로 편측 신절제술을 받은 환자 총 4104명의 자료를 이용해 머신러닝 기법을 이용한 급성 신손상 예측 모델을 만들고 검증했다. 수술 유형 및 시간, 성별, 기저질환, 종양 크기를 포함한 데이터를 수집했으며, 이를 바탕으로 서포트 벡터 머신, 랜덤 포레스트, 익스트림 그래디언트 부스팅, 라이트 GBM라는 4가지 머신러닝 기법을 사용해 예측 모델을 구축했다.

그 결과 수술 후 급손상은 4104명 중에서 총 1167명의 환자에게 나타나, 28.4%의 발생률을 기록했다. 알고리듬 성능을 평가하는 지표인 AUROC 기준으로, 머신러닝 모델들은 기존에 사용하던 SPARK 인덱스(단순 급성신손상 위험지표)에 비해 더 높은 수행력을 보였으며, 그중에서도 특히 라이트 GBM 모델의 AUROC가 0.81로 가장 예측도가 높았다.

출처:헬스코리아뉴스

김세중 교수는 “이번 연구는 단일 기관이 아닌 다기관 임상자료를 활용하여, 머신러닝 기법을 통해 여러 기관에서 적용 가능한 알고리듬을 개발했다”며, “향후 임상에 적용했을 때 신장암 수술 후 급성신손상 예측도를 향상시킬 수 있을 것으로 기대된다”고 밝혔다.

한편 이번 연구는 세계적 학술지인 사이언티픽 리포트(Scientific Reports)에 게재됐다.


헬스코리아뉴스 박원진 admin@hkn24.com

 

  • * Copyright ⓒ 헬스코리아뉴스 All Rights Reserved.