본문 바로가기
교류의 장/게시판

스크랩 대웅제약, AI 신약 시스템 비만∙항암 연구에 ‘속도’

by 크리에이터 정관진 2024. 2. 20.

연구실 모습/사진=대웅제약
대웅제약은 신약개발에 즉각 활용할 수 있는 주요 화합물 8억 종의 분자 모델을 전처리를 거쳐 자체 데이터베이스화하고, 이를 재료로 신약 후보물질을 발굴해내는 독자적 ‘AI 신약개발 시스템’까지 구축했다고 19일 밝혔다. 향후 전임상, 임상, 시판 등 신약개발 전주기로 AI 활용을 확대할 계획이다.

대웅제약은 DB와 신약개발 시스템을 결합해 비만과 당뇨, 항암제 분야에서 주목할 만한 연구 성과를 내고 있다고 말했다. 예컨대 비만과 당뇨질환 치료제 개발을 위해 자체 AI 시스템으로 두 가지 표적 단백질에 동시에 작용하는 ‘활성물질’을 발굴하고 최적화 단계에 돌입시키는데 단 두 달이 걸렸다. 대웅제약은 “연구원들이 1년 넘게 고민하던 난제를 AI를 통해 해결한 사례”라고 설명했다.

또 AI 시스템을 활용해 암세포 억제 효능을 보이는 활성물질을 발굴하고, 최적화를 통해 특허까지 가능한 ‘선도물질’을 확보하는데 단 6개월이 걸렸는데, 기존 방식으로 진행했을 경우 최소 1~2년 소요될 프로젝트였다는 게 회사측의 설명이다. 고비용, 저효율이라는 신약개발의 난제를 해결하고자 지난 2년간 ‘AI 신약개발 시스템’ 구축에 몰입한 결과가 가시화되고 있는 것이다.

대웅제약이 실제로 구매해 신약 개발에 즉각 쓰일 수 있는 8억 종 화합물질의 분자 모델 DB에 붙인 이름은 ‘다비드’(DAVID)다. 다비드(다윗)는 골리앗을 일격에 쓰러트린 성서에 등장하는 영웅이다. 신약개발 경쟁에서 AI로 글로벌 빅파마와 겨루겠다는 연구원들의 의지를 담았다.

8억 종이라는 수치는 지난 40여 년 간 대웅제약이 신약연구를 통해 확보한 화합물질과 현재 신약 개발에서 이용할 수 있는 거의 모든 화합물질의 결합체다. 단, 세계적으로 공개된 화합물질 오픈소스는 AI 신약개발을 위한 데이터로는 적합하지 않다. 복잡한 화합물질 구조에서 불필요한 정보를 분리, 제거하는 전처리 과정(Preprocessing)이 필수적이다. 대웅제약 AI 연구원들은 이 작업을 최우선으로 몰두해 AI가 활용할 수 있는 데이터로 모두 가공했다. 비로소 8억 종의 화합물질에 기반한 ‘AI 신약 후보물질 탐색’이 가능하게 된 것이다.

8억 종의 화합물 데이터는 AI에게 성장을 위한 자양분이다. 양질의 데이터가 확보되지 않으면 AI도 무용지물이다. 데이터베이스 구축은 AI 신약개발 경쟁에서 퀀텀 점프를 할 수 있는 발판을 마련한 것으로 대웅제약은 이제 기초공사를 마무리한 셈이다.

오늘날 연구자들은 신약 후보물질이 될 수 있는 화합물질의 수를 약 10의 60제곱 정도로 추정하고 있다. 인류가 단어로 표현할 수 있는 세계를 넘어선 미지의 수치다. 대웅제약이 확보한 화합물질 8억 종은 10의 9제곱 수준이다.

박준석 신약Discovery센터장은 “신약 후보물질의 세계는 우주와 같은데 AI가 신약개발의 대항해 시대를 열었다고 해도 과언이 아니다”라며, “AI로 미지의 영역을 개척해나간다면 굉장히 많은 신약 후보물질과 우수한 신약을 더 빠르게 개발해 인류 건강에 지대한 공헌을 할 것"이라고 했다.


출처 : https://health.chosun.com/site/data/html_dir/2024/02/19/2024021900973.html
 

출처: 크리에이터 정관진 제1군단 원문보기 글쓴이: 니르바나